import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 30, 1000)
y = 0.5 * x
plt.plot(x, y)
plt.xlabel('Input')
plt.ylabel('Output')
plt.title('Line Chart')
plt.savefig('linechart.png')
plt.show()
x = np.linspace(0, 30, 1000)
y = 0.5 * x
plt.plot(x,y,linestyle='dashed',linewidth=3, markersize=12)
plt.xlabel('Input')
plt.ylabel('Output')
plt.title('Line Chart')
plt.savefig('linechart2.png')
plt.show()
- np.random.randn(100, 2)
-> 100 random observations
-> 2D Array
- random_variables[:,0] -> First column of random_variables (all rows of column 0)
- random_variables[:,1] -> Second column of random_variables (all rows of column 1)
random_variables = np.random.randn(100, 2)
x = random_variables[:,0]
y = random_variables[:,1]
plt.scatter(x, y)
plt.savefig('scater1.png')
- np.random.randn()
- Returning samples from standard normal distribution
- All points are centered at zero (by default)
- X[:50] += 3
- First half of data will be centered at 3
- Y = np.zeros(200)
- an array with 200 zeros
- Y[:50] = 1
- Replace first half of zeros with 1
- All the points centered at 3 will have label 1
- Other point will have label 0
- c=Y
- c stands for color
- One dimenstional array containing integer how to color data
X = np.random.randn(200, 2)
X[:50] += 3
Y = np.zeros(200)
Y[:50] = 1
plt.scatter(X[:,0], X[:,1], c=Y)
plt.savefig('scater2.png')
import numpy as np
from numpy.random import randn
import matplotlib.pyplot as plt
x = []
y = []
k = 2000
while len(x) < k:
X = randn()
if -1 <= X <= 1:
x.append(X)
while len(y) < k:
X = randn()
if -1 <= X <= 1:
y.append(X)
Y = np.zeros(k)
for i in range(k):
if x[i]<0:
if y[i]>0:
Y[i] = 1
elif x[i]>0:
if y[i]<0:
Y[i] = 1
else:
Y[i] = 0
x = np.array(x)
y = np.array(y)
plt.scatter(x, y, c=Y)
plt.savefig('scater3.png')
X = np.random.randn(10000)
plt.hist(X, bins=20)
plt.savefig('hist1.png')
x = [2,8,10]
y = [11,16,9]
x2 = [3,9,11]
y2 = [6,15,7]
plt.bar(x, y)
plt.bar(x2, y2, color = 'r')
plt.title('Bar graph')
plt.ylabel('Y axis')
plt.xlabel('X axis')
plt.show()
np.random.seed(19680801)
all_data = [np.random.normal(0, std, size=100) for std in range(1, 4)]
labels = ['x1', 'x2', 'x3']
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(9, 4))
# rectangular box plot
bplot1 = ax1.boxplot(all_data,
vert=True, # vertical box alignment
patch_artist=True, # fill with color
labels=labels) # will be used to label x-ticks
ax1.set_title('Rectangular box plot')
# notch shape box plot
bplot2 = ax2.boxplot(all_data,
notch=True, # notch shape
vert=True, # vertical box alignment
patch_artist=True, # fill with color
labels=labels) # will be used to label x-ticks
ax2.set_title('Notched box plot')
# fill with colors
colors = ['pink', 'lightblue', 'lightgreen']
for bplot in (bplot1, bplot2):
for patch, color in zip(bplot['boxes'], colors):
patch.set_facecolor(color)
# adding horizontal grid lines
for ax in [ax1, ax2]:
ax.yaxis.grid(True)
ax.set_xlabel('Three separate samples')
ax.set_ylabel('Observed values')
plt.show()
labels = 'Python', 'C++', 'Ruby', 'Java'
sizes = [215, 130, 245, 210]
colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']
explode = (0.4, 0, 0, 0) # explode 1st slice
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True)
plt.axis('equal')
plt.show()
from PIL import Image
#url = "https://datascienceschools.github.io/Data_Visualization/cat.jpg"
image = Image.open('cat.jpg')
image
photo_array = np.array(image)
- (225, 225, 3)
- 225 rows
- 255 columns
- 3 -> color photo RBG
- Every pixel is 3*3
photo_array.shape
plt.imshow(photo_array);
gray_photo = photo_array.mean(axis=2)
gray_photo.shape
plt.imshow(gray_photo);
plt.imshow(gray_photo, cmap='gray')
plt.savefig('img.png')
x=np.arange(0,10)
y=np.arange(11,21)
plt.subplot(2,2,1)
plt.plot(x,y,'r--')
plt.subplot(2,2,2)
plt.plot(x,y,'g*--')
plt.subplot(2,2,3)
plt.plot(x,y,'bo')
plt.subplot(2,2,4)
plt.plot(x,y,'go')
plt.show()