Case Study (Car Price) :

Linear Regression Model

Overview

- Importing the relevant libraries

- Loading data

- Declaring Dependent and Independent variables

- Scaling the data

- Train & Test Split

- Creating & Fitting Regression Model

- Predictions (x_train)

- Scatter Plot (Comparing Predictions with Targets)

- Residual Plot (Checking for anomalies)

- Finding the R-Squared

- Finding the Intercept

- Creating a Summary Table (Feature & Weights)

- Testing

- Predictions (x_test)

- Scatter Plot (Comparing Predictions with Targets)

- Creating a Table (Comparong Predictions with Targets)

- Solution: Reset the Index

- Creating a Table (Comparing Predictions with Targets) 

- Exploring Descriptive Statistics

- Sorting the table by difference%

Importing the relevant libraries

In [1]:
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import seaborn as sns
sns.set()

Loading data

In [3]:
url = "https://datascienceschools.github.io/Machine_Learning/CaseStudy/LinearRegression/carprice_editted3.csv"

df = pd.read_csv(url)

df.head()
Out[3]:
log_price Mileage EngineV Brand_BMW Brand_Mercedes-Benz Brand_Mitsubishi Brand_Renault Brand_Toyota Brand_Volkswagen Body_hatch Body_other Body_sedan Body_vagon Body_van Engine Type_Gas Engine Type_Other Engine Type_Petrol Registration_yes
0 8.342840 277 2.0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1
1 8.974618 427 2.9 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
2 9.495519 358 5.0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1
3 10.043249 240 4.2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
4 9.814656 120 2.0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1

Declaring Dependent and Independent variables

- The target (dependent variable) is 'log price'
- The inputs are everything except the dependent variable, so we can simply drop it
In [3]:
target = df['log_price']

inputs = df.drop(['log_price'],axis=1)

Scaling the data

In [7]:
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(inputs)

inputs_scaled = scaler.transform(inputs)

Train & Test Split

- Split the variables with an 80-20 split -> test_size=0.2

- random_state = 365
In [8]:
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(inputs_scaled, target, test_size=0.2, random_state=365)

Creating & Fitting Regression Model

In [33]:
model = LinearRegression()

model.fit(x_train,y_train)
Out[33]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Predictions (x_train)

- Store in y_hat as this is the 'theoretical' name of the predictions
In [34]:
y_hat = model.predict(x_train)

Scatter Plot (Comparing Predictions with Targets)

 - The simplest way to compare the targets (y_train) and the predictions (y_hat) 

    -> is to plot them on a scatter plot

- The closer the points to the 45-degree line, the better the prediction

- Sometimes the plot will have different scales of the x-axis and the y-axis

- In order for x-axis and y-axis to be the same, add

        plt.xlim(6,13)
        plt.ylim(6,13)
In [12]:
plt.scatter(y_train, y_hat)

plt.xlabel('Targets (y_train)',size=18)
plt.ylabel('Predictions (y_hat)',size=18)

plt.xlim(6,13)
plt.ylim(6,13)

plt.show()

Residual Plot (checking for anomalies)

- We can plot the PDF of the residuals and check for anomalies

- In the best case scenario this plot should be normally distributed

- In our case we notice that there are many negative residuals (far away from the mean)

- Given the definition of the residuals (y_train - y_hat), negative values imply
  that y_hat (predictions) are much higher than y_train (the targets)
In [13]:
sns.distplot(y_train - y_hat)

plt.title("Residuals PDF", size=18)
Out[13]:
Text(0.5, 1.0, 'Residuals PDF')

Finding the R-Squared

# Note that this is NOT the adjusted R-squared
# in other words... find the Adjusted R-squared to have the appropriate measure :)
In [14]:
model.score(x_train,y_train)
Out[14]:
0.744996578792662

Finding the Intercept

In [13]:
model.intercept_
Out[13]:
9.415239458021299

Creating a Table (Feature & Weights)

In [15]:
summary = pd.DataFrame(inputs.columns.values, columns=['Features'])

summary['Weights'] = model.coef_

summary
Out[15]:
Features Weights
0 Mileage -0.448713
1 EngineV 0.209035
2 Brand_BMW 0.014250
3 Brand_Mercedes-Benz 0.012882
4 Brand_Mitsubishi -0.140552
5 Brand_Renault -0.179909
6 Brand_Toyota -0.060550
7 Brand_Volkswagen -0.089924
8 Body_hatch -0.145469
9 Body_other -0.101444
10 Body_sedan -0.200630
11 Body_vagon -0.129887
12 Body_van -0.168597
13 Engine Type_Gas -0.121490
14 Engine Type_Other -0.033368
15 Engine Type_Petrol -0.146909
16 Registration_yes 0.320473

Testing

- Testing will be done on a dataset that the algorithm has never seen

- Our test inputs are 'x_test', while the outputs: 'y_test' 

- We SHOULD NOT TRAIN THE MODEL ON THEM, we just feed them and find the predictions

- If the predictions are far off, we will know that our model overfitted

Prediction (x_test)

- To obtain the actual prices, we take the exponential of the log_price

        -> np.exp(y_hat_test)
In [22]:
y_hat_test = model.predict(x_test)

Scatter Plot ( Comparing Predictions with Targets)

- Create a scatter plot with the test targets and the test predictions

- You can include the argument 'alpha' which will introduce opacity to the graph
In [21]:
plt.scatter(y_test, y_hat_test, alpha=0.2)

plt.xlabel('Targets (y_test)',size=18)
plt.ylabel('Predictions (y_hat_test)',size=18)

plt.xlim(6,13)
plt.ylim(6,13)

plt.show()

Creating a Table (Comparing Predictions with Targets)

In [23]:
df_performance = pd.DataFrame(np.exp(y_hat_test), columns=['Prediction'])

df_performance['Target'] = np.exp(y_test)

df_performance.head()
Out[23]:
Prediction Target
0 10685.501696 NaN
1 3499.255242 7900.0
2 7553.285218 NaN
3 7463.963017 NaN
4 11353.490075 NaN

Solution: Reset the Index

In [26]:
y_test = y_test.reset_index(drop=True)

Creating a Table (Comparing Predictions with Targets)

- Residual -> the difference between the targets and the predictions

- OLS is an algorithm minimizing the total sum of squared errors (residuals)

- Difference% -> the absolute difference in percentage
In [35]:
df_performance = pd.DataFrame(np.exp(y_hat_test), columns=['Prediction'])

df_performance['Target'] = np.exp(y_test)

df_performance['Residual'] = df_performance['Target'] - df_performance['Prediction']

df_performance['Difference%'] = np.absolute(df_performance['Residual']/df_performance['Target']*100)

df_performance.head()
Out[35]:
Prediction Target Residual Difference%
0 10685.50 2300.00 -8385.50 364.59
1 3499.26 2800.00 -699.26 24.97
2 7553.29 2500.00 -5053.29 202.13
3 7463.96 6400.00 -1063.96 16.62
4 11353.49 9150.00 -2203.49 24.08

Exploring Descriptive Statistics

In [30]:
df_performance.describe()
Out[30]:
Prediction Target Residual Difference%
count 774.000000 774.000000 774.000000 774.000000
mean 15946.760167 18165.817106 2219.056939 36.256693
std 13133.197604 19967.858908 10871.218143 55.066507
min 1320.562768 1200.000000 -29456.498331 0.062794
25% 7413.644234 6900.000000 -2044.191251 12.108022
50% 11568.168859 11600.000000 142.518577 23.467728
75% 20162.408805 20500.000000 3147.343497 39.563570
max 77403.055224 126000.000000 85106.162329 512.688080

Sorting the table by difference%

- To see all rows, use 

    -> pd.options.display.max_rows = 999


- To make the dataset clear, display the result with only 2 digits after the dot 

    -> pd.set_option('display.float_format', lambda x: '%.2f' % x)
In [36]:
pd.options.display.max_rows = 999

pd.set_option('display.float_format', lambda x: '%.2f' % x)

df_performance.sort_values(by=['Difference%'])
Out[36]:
Prediction Target Residual Difference%
698 30480.85 30500.00 19.15 0.06
742 16960.31 16999.00 38.69 0.23
60 12469.21 12500.00 30.79 0.25
110 25614.14 25500.00 -114.14 0.45
367 42703.68 42500.00 -203.68 0.48
369 3084.69 3100.00 15.31 0.49
769 29651.73 29500.00 -151.73 0.51
272 9749.53 9800.00 50.47 0.52
714 23118.07 22999.00 -119.07 0.52
630 8734.58 8800.00 65.42 0.74
380 3473.79 3500.00 26.21 0.75
648 21174.10 21335.00 160.90 0.75
308 8967.74 8900.00 -67.74 0.76
665 17858.02 18000.00 141.98 0.79
379 17654.84 17800.00 145.16 0.82
719 11391.95 11500.00 108.05 0.94
102 28625.56 28900.00 274.44 0.95
94 7724.17 7800.00 75.83 0.97
561 6429.03 6500.00 70.97 1.09
242 7597.39 7500.00 -97.39 1.30
528 18555.09 18800.00 244.91 1.30
61 7396.87 7300.00 -96.87 1.33
19 16178.14 16400.00 221.86 1.35
280 12327.10 12499.00 171.90 1.38
311 51287.19 52055.25 768.06 1.48
723 6009.63 6100.00 90.37 1.48
49 4973.17 4900.00 -73.17 1.49
114 27716.14 27300.00 -416.14 1.52
636 28498.91 28950.00 451.09 1.56
612 2953.17 3000.00 46.83 1.56
47 26425.14 25999.00 -426.14 1.64
23 13111.91 12900.00 -211.91 1.64
31 12858.08 12650.00 -208.08 1.64
91 13421.16 13200.00 -221.16 1.68
329 7327.18 7200.00 -127.18 1.77
549 3816.33 3750.00 -66.33 1.77
252 9721.50 9900.00 178.50 1.80
387 44173.72 44999.00 825.28 1.83
267 40753.58 40000.00 -753.58 1.88
467 22262.80 22711.65 448.85 1.98
556 18231.44 18600.00 368.56 1.98
165 9596.94 9400.00 -196.94 2.10
259 6067.79 6200.00 132.21 2.13
601 35371.16 34600.00 -771.16 2.23
708 11967.39 11700.00 -267.39 2.29
593 17908.00 17500.00 -408.00 2.33
398 8707.13 8500.00 -207.13 2.44
526 29049.27 28350.00 -699.27 2.47
603 14513.46 14900.00 386.54 2.59
53 20453.89 21000.00 546.11 2.60
632 15383.35 14990.00 -393.35 2.62
533 24642.50 24000.00 -642.50 2.68
497 50099.92 51500.00 1400.08 2.72
212 16133.86 15700.00 -433.86 2.76
130 17489.92 18000.00 510.08 2.83
290 1894.40 1950.00 55.60 2.85
78 30810.25 29900.00 -910.25 3.04
642 8721.97 8999.00 277.03 3.08
437 18866.50 18300.00 -566.50 3.10
101 5958.63 6150.00 191.37 3.11
314 5811.74 6000.00 188.26 3.14
150 9800.43 9500.00 -300.43 3.16
565 7324.63 7100.00 -224.63 3.16
574 12583.52 13000.00 416.48 3.20
591 10115.13 9800.00 -315.13 3.22
172 11156.38 10800.00 -356.38 3.30
133 9279.28 9600.00 320.72 3.34
480 31369.37 32500.00 1130.63 3.48
87 2315.71 2400.00 84.29 3.51
11 5175.77 5000.00 -175.77 3.52
43 21611.83 22400.00 788.17 3.52
96 7976.26 7700.00 -276.26 3.59
406 24874.86 23999.00 -875.86 3.65
173 36516.35 37900.00 1383.65 3.65
540 4666.05 4500.00 -166.05 3.69
40 18672.68 18000.00 -672.68 3.74
340 14815.83 15400.00 584.17 3.79
239 10581.62 10999.00 417.38 3.79
109 12663.54 12200.00 -463.54 3.80
256 1825.44 1900.00 74.56 3.92
317 12247.90 12750.00 502.10 3.94
77 5930.73 5700.00 -230.73 4.05
301 9782.47 10200.00 417.53 4.09
333 12452.22 11960.00 -492.22 4.12
570 23163.87 24171.42 1007.55 4.17
581 3246.94 3390.00 143.06 4.22
693 12354.16 12900.00 545.84 4.23
381 33499.44 35000.00 1500.56 4.29
438 16257.03 16999.00 741.97 4.36
368 8415.81 8800.00 384.19 4.37
273 12318.39 12900.00 581.61 4.51
235 2765.14 2900.00 134.86 4.65
168 11420.95 11999.00 578.05 4.82
707 2725.40 2600.00 -125.40 4.82
72 23624.69 22500.00 -1124.69 5.00
559 11377.84 11999.00 621.16 5.18
134 12096.18 11500.00 -596.18 5.18
446 9363.27 8900.00 -463.27 5.21
127 12311.47 11700.00 -611.47 5.23
450 14218.94 13500.00 -718.94 5.33
293 8431.89 7999.00 -432.89 5.41
18 37600.15 39900.00 2299.85 5.76
452 39882.67 37700.00 -2182.67 5.79
195 20588.57 21900.00 1311.43 5.99
676 6861.84 7300.00 438.16 6.00
766 18982.15 17900.00 -1082.15 6.05
328 15067.85 14200.00 -867.85 6.11
762 12201.29 12999.00 797.71 6.14
649 11147.91 10500.00 -647.91 6.17
299 20183.30 18999.00 -1184.30 6.23
641 17334.11 18500.00 1165.89 6.30
5 21289.80 20000.00 -1289.80 6.45
545 6826.78 7300.00 473.22 6.48
622 4472.47 4200.00 -272.47 6.49
422 53294.61 57000.00 3705.39 6.50
740 6658.73 6250.00 -408.73 6.54
85 19001.29 17800.00 -1201.29 6.75
315 4590.49 4300.00 -290.49 6.76
462 43236.92 40500.00 -2736.92 6.76
394 9076.42 8500.00 -576.42 6.78
188 10159.18 10900.00 740.82 6.80
731 16027.02 15000.00 -1027.02 6.85
448 13502.35 14500.00 997.65 6.88
254 6413.26 5999.00 -414.26 6.91
667 49221.63 52999.00 3777.37 7.13
600 21816.43 23500.00 1683.57 7.16
144 11969.66 12900.00 930.34 7.21
270 8263.95 7700.00 -563.95 7.32
8 11581.54 12500.00 918.46 7.35
433 6977.90 6500.00 -477.90 7.35
251 6978.91 6500.00 -478.91 7.37
553 16392.22 17700.00 1307.78 7.39
725 15742.41 16999.00 1256.59 7.39
615 7869.47 8500.00 630.53 7.42
518 21297.65 19800.00 -1497.65 7.56
268 6893.62 6400.00 -493.62 7.71
71 15627.03 14500.00 -1127.03 7.77
579 3411.53 3700.00 288.47 7.80
330 11336.71 12300.00 963.29 7.83
59 8195.34 7600.00 -595.34 7.83
354 16717.08 15500.00 -1217.08 7.85
147 7772.57 7200.00 -572.57 7.95
508 16197.42 15000.00 -1197.42 7.98
22 6102.36 5650.00 -452.36 8.01
103 4488.43 4150.00 -338.43 8.16
755 15885.66 17300.00 1414.34 8.18
198 17983.10 19600.00 1616.90 8.25
470 7045.72 6500.00 -545.72 8.40
710 3795.06 3500.00 -295.06 8.43
185 6130.96 6700.00 569.04 8.49
542 5947.51 6500.00 552.49 8.50
412 7609.28 7000.00 -609.28 8.70
415 8117.44 8900.00 782.56 8.79
200 11098.18 10200.00 -898.18 8.81
754 17028.45 18700.00 1671.55 8.94
65 19847.25 18200.00 -1647.25 9.05
682 5454.34 5000.00 -454.34 9.09
222 20662.46 18900.00 -1762.46 9.33
89 11696.25 12900.00 1203.75 9.33
52 10716.84 9800.00 -916.84 9.36
126 13459.92 12300.00 -1159.92 9.43
598 8767.54 9700.00 932.46 9.61
504 23272.83 25749.75 2476.92 9.62
493 5484.97 4999.00 -485.97 9.72
449 9495.62 8650.00 -845.62 9.78
516 11858.48 10800.00 -1058.48 9.80
261 53312.81 48535.50 -4777.31 9.84
531 47047.70 52300.00 5252.30 10.04
68 6717.17 6100.00 -617.17 10.12
376 5391.77 6000.00 608.23 10.14
538 17591.09 19600.00 2008.91 10.25
419 17591.09 19600.00 2008.91 10.25
595 25576.58 28500.00 2923.42 10.26
472 20367.25 22700.00 2332.75 10.28
386 7267.36 8100.00 832.64 10.28
473 1792.36 1999.00 206.64 10.34
14 8248.67 9200.00 951.33 10.34
123 5643.45 6300.00 656.55 10.42
142 6839.57 7650.00 810.43 10.59
257 41503.90 37500.00 -4003.90 10.68
194 9310.69 8400.00 -910.69 10.84
637 35662.26 40000.00 4337.74 10.84
410 16407.29 14800.00 -1607.29 10.86
395 21303.57 23900.00 2596.43 10.86
213 15872.91 14300.00 -1572.91 11.00
653 10332.54 9300.00 -1032.54 11.10
54 18575.43 20900.00 2324.57 11.12
105 8882.65 10000.00 1117.35 11.17
597 7797.18 6999.00 -798.18 11.40
15 10621.84 11999.00 1377.16 11.48
770 10732.07 9600.00 -1132.07 11.79
674 2381.01 2700.00 318.99 11.81
132 11200.20 9999.00 -1201.20 12.01
525 2373.66 2700.00 326.34 12.09
730 10696.56 12179.00 1482.44 12.17
506 3590.97 3200.00 -390.97 12.22
278 53063.22 60500.00 7436.78 12.29
108 7300.05 6500.00 -800.05 12.31
503 6392.70 7300.00 907.30 12.43
536 6746.43 6000.00 -746.43 12.44
156 9192.06 10500.00 1307.94 12.46
765 11034.66 9800.00 -1234.66 12.60
534 16939.86 19400.00 2460.14 12.68
50 2479.43 2200.00 -279.43 12.70
562 9593.52 11000.00 1406.48 12.79
131 23967.81 27500.00 3532.19 12.84
157 7491.01 8600.00 1108.99 12.90
638 8242.62 7300.00 -942.62 12.91
543 9489.56 10900.00 1410.44 12.94
724 44312.98 50900.00 6587.02 12.94
527 9829.53 8700.00 -1129.53 12.98
610 9269.68 8200.00 -1069.68 13.04
359 4524.77 3999.00 -525.77 13.15
24 23650.15 20900.00 -2750.15 13.16
402 8850.21 10200.00 1349.79 13.23
360 4770.52 5500.00 729.48 13.26
184 29479.97 34000.00 4520.03 13.29
324 8316.92 9600.00 1283.08 13.37
307 24974.57 28900.00 3925.43 13.58
118 14943.75 17300.00 2356.25 13.62
607 28498.91 33000.00 4501.09 13.64
332 14591.35 16900.00 2308.65 13.66
140 10358.58 12000.00 1641.42 13.68
627 13074.74 11500.00 -1574.74 13.69
761 9097.13 8000.00 -1097.13 13.71
207 15010.51 13200.00 -1810.51 13.72
685 12593.00 14600.00 2007.00 13.75
350 20246.04 23500.00 3253.96 13.85
143 8768.29 7700.00 -1068.29 13.87
318 39744.80 34900.00 -4844.80 13.88
377 9909.62 8700.00 -1209.62 13.90
152 44680.77 51900.00 7219.23 13.91
57 21942.05 25500.00 3557.95 13.95
277 12900.31 15000.00 2099.69 14.00
253 18128.32 15900.00 -2228.32 14.01
384 4296.77 5000.00 703.23 14.06
113 6006.27 6999.00 992.73 14.18
287 1972.28 2300.00 327.72 14.25
650 8236.36 7200.00 -1036.36 14.39
319 10612.51 12400.00 1787.49 14.42
430 14197.26 12400.00 -1797.26 14.49
95 47013.28 55000.00 7986.72 14.52
757 12028.91 10500.00 -1528.91 14.56
153 3666.31 3200.00 -466.31 14.57
720 2860.97 3350.00 489.03 14.60
631 7256.86 8500.00 1243.14 14.63
36 10499.60 12300.00 1800.40 14.64
763 12383.35 10800.00 -1583.35 14.66
344 11937.31 13995.00 2057.69 14.70
389 2810.71 2450.00 -360.71 14.72
204 7664.32 9000.00 1335.68 14.84
718 8041.62 6999.00 -1042.62 14.90
484 13334.19 11600.00 -1734.19 14.95
258 13680.48 11900.00 -1780.48 14.96
616 13500.69 15900.00 2399.31 15.09
281 11638.89 13708.50 2069.61 15.10
476 15700.53 18500.00 2799.47 15.13
716 11425.01 13500.00 2074.99 15.37
529 53312.81 63000.00 9687.19 15.38
481 6599.62 7800.00 1200.38 15.39
706 61639.73 72900.00 11260.27 15.45
558 7098.53 8400.00 1301.47 15.49
151 10889.39 12900.00 2010.61 15.59
663 2613.97 3099.00 485.03 15.65
16 23721.58 20500.00 -3221.58 15.72
356 10133.68 8750.00 -1383.68 15.81
297 22261.50 19200.00 -3061.50 15.95
119 10448.50 8999.00 -1449.50 16.11
390 24271.90 20900.00 -3371.90 16.13
439 14926.69 17800.00 2873.31 16.14
441 11619.16 10000.00 -1619.16 16.19
548 46465.02 39900.00 -6565.02 16.45
460 50954.68 61000.00 10045.32 16.47
211 6848.88 8200.00 1351.12 16.48
106 16547.03 14200.00 -2347.03 16.53
599 4590.16 5500.00 909.84 16.54
220 13348.91 15999.00 2650.09 16.56
226 11191.05 9600.00 -1591.05 16.57
197 2126.49 2550.00 423.51 16.61
3 7463.96 6400.00 -1063.96 16.62
378 2749.08 3300.00 550.92 16.69
507 18282.75 21950.00 3667.25 16.71
186 19071.43 22900.00 3828.57 16.72
100 32886.86 39500.00 6613.14 16.74
620 25752.19 30990.00 5237.81 16.90
229 7719.69 9300.00 1580.31 16.99
400 25986.31 31310.00 5323.69 17.00
336 8250.47 9950.00 1699.53 17.08
483 28937.50 34900.00 5962.50 17.08
171 8392.42 7150.00 -1242.42 17.38
421 8033.61 9750.00 1716.39 17.60
643 8156.11 9900.00 1743.89 17.62
696 2470.61 3000.00 529.39 17.65
286 19659.97 16700.00 -2959.97 17.72
496 17540.72 14899.00 -2641.72 17.73
655 7814.16 9500.00 1685.84 17.75
407 21097.66 17900.00 -3197.66 17.86
464 4266.27 5200.00 933.73 17.96
758 9380.46 7950.00 -1430.46 17.99
670 33614.62 41000.00 7385.38 18.01
9 33614.62 41000.00 7385.38 18.01
263 9089.35 7700.00 -1389.35 18.04
521 27740.81 23500.00 -4240.81 18.05
46 3542.72 3000.00 -542.72 18.09
237 25037.87 21200.00 -3837.87 18.10
28 35991.51 43999.00 8007.49 18.20
125 13733.33 16800.00 3066.67 18.25
721 11431.35 13999.00 2567.65 18.34
749 6082.85 7450.00 1367.15 18.35
55 12674.57 10700.00 -1974.57 18.45
466 25975.12 21900.00 -4075.12 18.61
651 3026.25 2550.00 -476.25 18.68
560 33172.20 40800.00 7627.80 18.70
247 13159.16 16200.00 3040.84 18.77
738 20216.67 24900.00 4683.33 18.81
715 10220.74 8600.00 -1620.74 18.85
608 29127.72 24500.00 -4627.72 18.89
509 5839.08 7200.00 1360.92 18.90
435 53063.22 65500.00 12436.78 18.99
187 28256.79 34900.00 6643.21 19.03
689 4524.77 3800.00 -724.77 19.07
51 2543.57 3149.25 605.68 19.23
501 60493.51 75000.00 14506.49 19.34
292 8962.29 7500.00 -1462.29 19.50
193 14832.32 12400.00 -2432.32 19.62
711 19676.51 24500.00 4823.49 19.69
7 20349.62 16999.00 -3350.62 19.71
569 1926.60 2400.00 473.40 19.72
453 8381.60 6999.00 -1382.60 19.75
444 38334.67 32000.00 -6334.67 19.80
454 20972.54 17500.00 -3472.54 19.84
176 6732.97 8400.00 1667.03 19.85
240 10419.20 13000.00 2580.80 19.85
688 24572.28 20500.00 -4072.28 19.86
313 10014.71 12500.00 2485.29 19.88
471 4209.17 3500.00 -709.17 20.26
535 34678.95 43500.00 8821.05 20.28
79 18893.76 15700.00 -3193.76 20.34
409 8121.22 10200.00 2078.78 20.38
154 11443.85 9499.00 -1944.85 20.47
494 33392.40 42000.00 8607.60 20.49
98 6746.48 8500.00 1753.52 20.63
227 17251.60 14300.00 -2951.60 20.64
115 6981.34 8800.00 1818.66 20.67
744 2379.58 3000.00 620.42 20.68
474 10932.17 13800.00 2867.83 20.78
459 2779.04 2300.00 -479.04 20.83
331 11002.01 13900.00 2897.99 20.85
76 5144.02 6500.00 1355.98 20.86
244 7110.32 8990.00 1879.68 20.91
644 53312.81 67431.00 14118.19 20.94
174 7745.02 6400.00 -1345.02 21.02
358 63921.33 80999.00 17077.67 21.08
425 3940.49 4999.00 1058.51 21.17
321 23630.85 19500.00 -4130.85 21.18
312 14792.29 18800.00 4007.71 21.32
17 11770.64 9700.00 -2070.64 21.35
517 9424.34 12000.00 2575.66 21.46
392 8139.48 6700.00 -1439.48 21.48
416 22367.52 28500.00 6132.48 21.52
335 13004.34 10700.00 -2304.34 21.54
45 8512.03 7000.00 -1512.03 21.60
515 32121.20 41000.00 8878.80 21.66
557 12523.73 16000.00 3476.27 21.73
41 19845.36 16300.00 -3545.36 21.75
13 13292.71 16999.00 3706.29 21.80
691 8467.17 6950.00 -1517.17 21.83
20 11876.82 15200.00 3323.18 21.86
275 22547.55 18500.00 -4047.55 21.88
120 50728.89 65000.00 14271.11 21.96
647 2625.10 2150.00 -475.10 22.10
524 5863.41 4800.00 -1063.41 22.15
547 9175.06 7499.00 -1676.06 22.35
747 8453.28 10900.00 2446.72 22.45
295 5350.91 6900.00 1549.09 22.45
80 6819.44 8800.00 1980.56 22.51
661 10303.21 13300.00 2996.79 22.53
537 9139.04 11800.00 2660.96 22.55
626 18621.12 24100.00 5478.88 22.73
576 15954.72 12999.00 -2955.72 22.74
499 12270.01 15900.00 3629.99 22.83
218 11490.44 14900.00 3409.56 22.88
458 14136.01 11500.00 -2636.01 22.92
138 11095.57 8999.00 -2096.57 23.30
320 10350.25 13500.00 3149.75 23.33
606 20680.40 27000.00 6319.60 23.41
709 34446.96 27900.00 -6546.96 23.47
75 4209.17 5500.00 1290.83 23.47
155 3086.38 2499.00 -587.38 23.50
602 16427.12 13300.00 -3127.12 23.51
736 53312.81 43163.25 -10149.56 23.51
495 3747.21 4900.00 1152.79 23.53
399 14410.15 18932.55 4522.40 23.89
771 13922.45 18300.00 4377.55 23.92
662 9232.79 7450.00 -1782.79 23.93
634 18165.16 23900.00 5734.84 24.00
4 11353.49 9150.00 -2203.49 24.08
580 6205.48 5000.00 -1205.48 24.11
687 11004.05 14500.00 3495.95 24.11
305 10505.98 13900.00 3394.02 24.42
206 19920.63 16000.00 -3920.63 24.50
659 3621.08 4799.00 1177.92 24.55
178 17316.59 13900.00 -3416.59 24.58
692 8471.55 6799.00 -1672.55 24.60
479 36883.77 49000.00 12116.23 24.73
209 8242.62 6600.00 -1642.62 24.89
773 13491.16 10800.00 -2691.16 24.92
594 3001.37 4000.00 998.63 24.97
1 3499.26 2800.00 -699.26 24.97
625 23485.45 18777.00 -4708.45 25.08
370 10835.95 14500.00 3664.05 25.27
83 6013.05 4800.00 -1213.05 25.27
443 3735.04 4999.00 1263.96 25.28
158 15623.39 20999.00 5375.61 25.60
519 8667.12 6900.00 -1767.12 25.61
177 8916.19 11999.00 3082.81 25.69
361 8688.92 11700.00 3011.08 25.74
482 12027.56 16200.00 4172.44 25.76
705 12976.15 17500.00 4523.85 25.85
135 44407.14 59999.00 15591.86 25.99
264 31059.18 42000.00 10940.82 26.05
372 8110.06 10990.00 2879.94 26.21
672 5679.39 4500.00 -1179.39 26.21
699 4255.62 5800.00 1544.38 26.63
306 3164.66 2499.00 -665.66 26.64
279 3154.48 4300.00 1145.52 26.64
145 4307.68 3400.00 -907.68 26.70
681 5195.69 4100.00 -1095.69 26.72
175 34863.53 47600.00 12736.47 26.76
440 8638.63 11800.00 3161.37 26.79
683 32771.45 44800.00 12028.55 26.85
592 28154.84 38500.00 10345.16 26.87
429 67952.07 53500.00 -14452.07 27.01
294 13471.84 10600.00 -2871.84 27.09
623 23227.15 31900.00 8672.85 27.19
107 7131.92 9800.00 2668.08 27.23
86 8071.70 11100.00 3028.30 27.28
37 26478.15 20800.00 -5678.15 27.30
92 7116.68 9800.00 2683.32 27.38
231 9312.21 7300.00 -2012.21 27.56
62 10848.85 8500.00 -2348.85 27.63
572 10597.72 8300.00 -2297.72 27.68
568 7940.44 11000.00 3059.56 27.81
202 5040.46 7000.00 1959.54 27.99
327 10716.00 14900.00 4184.00 28.08
310 9205.10 12800.00 3594.90 28.09
461 31656.01 24700.00 -6956.01 28.16
613 13853.36 10800.00 -3053.36 28.27
323 7098.53 9900.00 2801.47 28.30
752 8591.66 12000.00 3408.34 28.40
348 12201.29 9500.00 -2701.29 28.43
424 50074.56 69990.00 19915.44 28.45
584 11432.63 8900.00 -2532.63 28.46
99 6437.21 8999.00 2561.79 28.47
149 8351.34 6500.00 -1851.34 28.48
58 35336.33 49500.00 14163.67 28.61
423 74232.55 103999.00 29766.45 28.62
726 45664.45 35500.00 -10164.45 28.63
614 19298.61 14999.00 -4299.61 28.67
129 11580.54 9000.00 -2580.54 28.67
303 23496.36 33000.00 9503.64 28.80
21 31557.80 24500.00 -7057.80 28.81
767 24323.48 18800.00 -5523.48 29.38
192 18285.07 25900.00 7614.93 29.40
700 25640.67 19800.00 -5840.67 29.50
552 5983.44 8500.00 2516.56 29.61
500 8973.16 12750.00 3776.84 29.62
734 23336.06 33200.00 9863.94 29.71
233 6110.94 8700.00 2589.06 29.76
582 7724.17 11000.00 3275.83 29.78
201 10094.58 7777.00 -2317.58 29.80
296 21690.99 30900.00 9209.01 29.80
523 10809.48 15400.00 4590.52 29.81
357 11018.79 15700.00 4681.21 29.82
190 13377.99 10300.00 -3077.99 29.88
234 12731.26 9800.00 -2931.26 29.91
695 11178.46 8600.00 -2578.46 29.98
364 21681.00 30999.00 9318.00 30.06
362 27293.13 39040.00 11746.87 30.09
309 6510.80 5000.00 -1510.80 30.22
146 8298.32 11900.00 3601.68 30.27
373 10821.19 8299.00 -2522.19 30.39
513 5346.97 4100.00 -1246.97 30.41
12 5484.02 7900.00 2415.98 30.58
352 5238.05 4000.00 -1238.05 30.95
181 17597.10 25500.00 7902.90 30.99
128 7727.53 11200.00 3472.47 31.00
753 6358.55 4850.00 -1508.55 31.10
671 2886.35 4200.00 1313.65 31.28
764 14049.76 10700.00 -3349.76 31.31
216 12974.89 18900.00 5925.11 31.35
260 6858.89 9999.00 3140.11 31.40
124 15691.29 22900.00 7208.71 31.48
214 2393.34 3500.00 1106.66 31.62
405 6425.00 9400.00 2975.00 31.65
70 50206.83 73500.00 23293.17 31.69
596 25685.67 19500.00 -6185.67 31.72
351 25951.31 19692.08 -6259.23 31.79
489 28910.96 42500.00 13589.04 31.97
38 9919.19 14600.00 4680.81 32.06
274 9113.05 6900.00 -2213.05 32.07
374 24427.14 36000.00 11572.86 32.15
302 4738.89 7000.00 2261.11 32.30
148 25040.42 37000.00 11959.58 32.32
164 18403.35 13893.75 -4509.60 32.46
420 14576.33 11000.00 -3576.33 32.51
555 6610.04 9800.00 3189.96 32.55
505 10105.70 15000.00 4894.30 32.63
250 5041.20 3800.00 -1241.20 32.66
491 6503.62 4900.00 -1603.62 32.73
426 13542.79 10200.00 -3342.79 32.77
84 4364.08 6500.00 2135.92 32.86
136 12006.66 17900.00 5893.34 32.92
139 7712.65 11500.00 3787.35 32.93
618 31251.89 23500.00 -7751.89 32.99
702 7011.74 10500.00 3488.26 33.22
728 5792.10 8700.00 2907.90 33.42
751 8493.04 12800.00 4306.96 33.65
498 7950.27 12000.00 4049.73 33.75
605 8940.39 13500.00 4559.61 33.77
678 4569.15 6900.00 2330.85 33.78
205 13041.39 19700.00 6658.61 33.80
265 20163.48 30500.00 10336.52 33.89
403 2839.03 4300.00 1460.97 33.98
291 20433.23 30999.00 10565.77 34.08
74 1746.19 2650.00 903.81 34.11
741 19855.31 14800.00 -5055.31 34.16
170 19741.65 29999.00 10257.35 34.19
203 65613.31 99999.00 34385.69 34.39
289 7178.20 10950.00 3771.80 34.45
90 9143.17 6800.00 -2343.17 34.46
563 2285.24 3500.00 1214.76 34.71
112 22835.48 16950.00 -5885.48 34.72
189 10786.38 8000.00 -2786.38 34.83
669 11477.47 17650.00 6172.53 34.97
163 23972.56 36900.00 12927.44 35.03
97 3648.96 2700.00 -948.96 35.15
690 11706.93 18100.00 6393.07 35.32
117 7178.20 11100.00 3921.80 35.33
673 22213.53 34500.00 12286.47 35.61
739 22213.53 34500.00 12286.47 35.61
341 12897.92 9500.00 -3397.92 35.77
159 12904.68 9500.00 -3404.68 35.84
64 9611.80 15000.00 5388.20 35.92
300 20236.85 31600.00 11363.15 35.96
269 4151.02 6500.00 2348.98 36.14
345 28951.20 45500.00 16548.80 36.37
442 25951.31 18988.13 -6963.18 36.67
475 5570.46 8800.00 3229.54 36.70
355 22454.74 35500.00 13045.26 36.75
246 41711.18 30500.00 -11211.18 36.76
111 3152.62 4999.00 1846.38 36.93
490 8902.52 6500.00 -2402.52 36.96
748 48699.98 77500.00 28800.02 37.16
457 16821.54 26800.00 9978.46 37.23
104 5521.28 8800.00 3278.72 37.26
743 5268.17 8400.00 3131.83 37.28
469 65825.25 104999.00 39173.75 37.31
32 12459.85 19900.00 7440.15 37.39
666 65723.62 104999.00 39275.38 37.41
401 9070.23 14500.00 5429.77 37.45
586 9348.90 6800.00 -2548.90 37.48
541 9369.66 15000.00 5630.34 37.54
160 32954.19 52777.00 19822.81 37.56
652 17195.57 12500.00 -4695.57 37.56
583 3425.23 5500.00 2074.77 37.72
589 3173.48 5100.00 1926.52 37.77
735 10337.11 7500.00 -2837.11 37.83
375 65742.57 105999.00 40256.43 37.98
217 8661.95 13999.00 5337.05 38.12
29 26062.23 42500.00 16437.77 38.68
283 7630.64 5500.00 -2130.64 38.74
418 11378.43 18600.00 7221.57 38.83
137 66032.76 107999.00 41966.24 38.86
567 7279.97 11950.00 4670.03 39.08
73 18577.88 30500.00 11922.12 39.09
488 4043.74 2900.00 -1143.74 39.44
26 2178.94 3600.00 1421.06 39.47
42 23286.27 38500.00 15213.73 39.52
468 12558.90 8999.00 -3559.90 39.56
241 18432.63 30500.00 12067.37 39.57
325 9057.77 14999.00 5941.23 39.61
675 13476.90 22500.00 9023.10 40.10
737 37704.71 26900.00 -10804.71 40.17
346 32945.80 23500.00 -9445.80 40.19
445 7712.65 5500.00 -2212.65 40.23
266 65742.57 109999.00 44256.43 40.23
478 36764.38 62000.00 25235.62 40.70
48 77403.06 55000.00 -22403.06 40.73
712 8530.54 14500.00 5969.46 41.17
587 15259.81 26000.00 10740.19 41.31
431 16253.48 11500.00 -4753.48 41.33
141 1815.28 3100.00 1284.72 41.44
363 44193.38 75500.00 31306.62 41.47
25 45272.25 31990.00 -13282.25 41.52
230 9198.08 15800.00 6601.92 41.78
34 19854.79 14000.00 -5854.79 41.82
697 10031.96 17300.00 7268.04 42.01
371 9661.78 6800.00 -2861.78 42.09
628 2539.57 4400.00 1860.43 42.28
388 11474.22 19999.00 8524.78 42.63
316 65887.51 114999.00 49111.49 42.71
199 2784.46 1950.00 -834.46 42.79
514 15015.22 10500.00 -4515.22 43.00
210 31216.83 55000.00 23783.17 43.24
337 5374.74 3750.00 -1624.74 43.33
10 7241.07 12800.00 5558.93 43.43
646 3450.69 6100.00 2649.31 43.43
39 16724.45 29600.00 12875.55 43.50
322 65210.35 115800.00 50589.65 43.69
645 10740.09 19100.00 8359.91 43.77
413 12234.68 8500.00 -3734.68 43.94
640 14402.34 10000.00 -4402.34 44.02
88 10807.78 7500.00 -3307.78 44.10
585 39074.36 69999.00 30924.64 44.18
590 14512.61 25999.00 11486.39 44.18
66 3316.44 2300.00 -1016.44 44.19
588 12255.45 22000.00 9744.55 44.29
539 6781.86 4700.00 -2081.86 44.29
756 3752.54 2600.00 -1152.54 44.33
428 2389.14 1650.00 -739.14 44.80
285 34761.74 24000.00 -10761.74 44.84
566 11881.05 8200.00 -3681.05 44.89
510 1873.03 3400.00 1526.97 44.91
167 13212.52 23999.00 10786.48 44.95
511 17282.06 11900.00 -5382.06 45.23
522 17011.43 11700.00 -5311.43 45.40
349 2020.25 3700.00 1679.75 45.40
684 18942.34 12999.00 -5943.34 45.72
35 11337.51 20900.00 9562.49 45.75
365 10547.82 19500.00 8952.18 45.91
745 6421.18 4400.00 -2021.18 45.94
334 12414.72 23000.00 10585.28 46.02
255 24796.09 46000.00 21203.91 46.10
717 4172.84 7750.00 3577.16 46.16
191 15956.95 29999.00 14042.05 46.81
575 1858.34 3500.00 1641.66 46.90
169 8522.39 5800.00 -2722.39 46.94
385 13235.55 8999.00 -4236.55 47.08
393 13600.39 25800.00 12199.61 47.29
654 4032.10 7650.00 3617.90 47.29
262 12414.41 8420.00 -3994.41 47.44
617 2573.48 4900.00 2326.52 47.48
342 14572.70 27900.00 13327.30 47.77
512 15144.28 29000.00 13855.72 47.78
6 20159.19 38888.00 18728.81 48.16
44 7241.07 14000.00 6758.93 48.28
564 25682.58 17300.00 -8382.58 48.45
658 10563.39 20500.00 9936.61 48.47
304 6546.81 4400.00 -2146.81 48.79
768 38260.36 75555.00 37294.64 49.36
338 38260.36 75555.00 37294.64 49.36
760 13443.32 9000.00 -4443.32 49.37
179 14933.54 29500.00 14566.46 49.38
486 13884.26 27800.00 13915.74 50.06
604 31373.47 20859.15 -10514.32 50.41
183 47014.52 95000.00 47985.48 50.51
121 41075.73 27200.00 -13875.73 51.01
759 10125.27 6700.00 -3425.27 51.12
343 60603.06 124000.00 63396.94 51.13
414 14363.76 9500.00 -4863.76 51.20
391 25302.43 52000.00 26697.57 51.34
249 7391.67 15200.00 7808.33 51.37
353 9753.44 20400.00 10646.56 52.19
243 32925.60 69500.00 36574.40 52.63
33 22941.80 15000.00 -7941.80 52.95
223 6199.59 13200.00 7000.41 53.03
703 5597.06 11999.00 6401.94 53.35
411 13409.47 8700.00 -4709.47 54.13
288 6635.73 4300.00 -2335.73 54.32
573 33707.27 73900.00 40192.73 54.39
732 19309.90 12500.00 -6809.90 54.48
456 19624.73 12700.00 -6924.73 54.53
383 13757.58 8900.00 -4857.58 54.58
544 12354.92 27500.00 15145.08 55.07
530 17714.62 11400.00 -6314.62 55.39
551 11555.80 7400.00 -4155.80 56.16
248 22011.47 13999.00 -8012.47 57.24
245 15457.91 9800.00 -5657.91 57.73
339 11099.09 6999.00 -4100.09 58.58
656 35039.40 85555.00 50515.60 59.04
219 34376.16 85000.00 50623.84 59.56
520 16773.62 10500.00 -6273.62 59.75
772 27487.75 68500.00 41012.25 59.87
701 7996.00 4999.00 -2997.00 59.95
215 5284.06 3300.00 -1984.06 60.12
447 34863.53 87777.00 52913.47 60.28
180 19701.70 49999.00 30297.30 60.60
722 30409.09 18900.00 -11509.09 60.89
577 14486.38 9000.00 -5486.38 60.96
733 11601.33 7200.00 -4401.33 61.13
487 10824.89 6700.00 -4124.89 61.57
408 65448.37 40500.00 -24948.37 61.60
63 5351.86 3300.00 -2051.86 62.18
679 25864.65 69990.00 44125.35 63.05
228 15682.82 9600.00 -6082.82 63.36
284 40765.33 112000.00 71234.67 63.60
232 1320.56 3700.00 2379.44 64.31
417 3795.06 2300.00 -1495.06 65.00
122 19335.34 55555.00 36219.66 65.20
238 26736.21 16100.00 -10636.21 66.06
347 26441.03 15900.00 -10541.03 66.30
276 5002.39 2999.00 -2003.39 66.80
93 18317.20 10974.21 -7342.99 66.91
436 40893.84 126000.00 85106.16 67.54
621 38473.71 119000.00 80526.29 67.67
221 34863.53 109999.00 75135.47 68.31
455 10946.44 6500.00 -4446.44 68.41
578 3205.38 1900.00 -1305.38 68.70
624 16924.74 9999.00 -6925.74 69.26
326 9356.43 5500.00 -3856.43 70.12
477 15374.08 8900.00 -6474.08 72.74
633 11056.52 6400.00 -4656.52 72.76
69 2440.90 1400.00 -1040.90 74.35
224 3939.91 15500.00 11560.09 74.58
56 15380.04 8800.00 -6580.04 74.77
463 35093.27 19990.00 -15103.27 75.55
668 8270.38 4700.00 -3570.38 75.97
225 6916.13 3900.00 -3016.13 77.34
546 6746.48 3799.00 -2947.48 77.59
27 2555.02 11600.00 9044.98 77.97
746 13355.11 7500.00 -5855.11 78.07
271 3948.74 2200.00 -1748.74 79.49
236 9024.05 4900.00 -4124.05 84.16
166 15292.10 8300.00 -6992.10 84.24
67 7621.25 4100.00 -3521.25 85.88
432 2975.40 1600.00 -1375.40 85.96
550 14915.98 7900.00 -7015.98 88.81
208 5716.14 3000.00 -2716.14 90.54
116 15819.50 8300.00 -7519.50 90.60
366 13420.15 6999.00 -6421.15 91.74
686 23576.99 12000.00 -11576.99 96.47
404 8648.80 4400.00 -4248.80 96.56
30 15559.43 7900.00 -7659.43 96.95
713 4004.65 2000.00 -2004.65 100.23
611 27225.34 13500.00 -13725.34 101.67
427 5462.52 2700.00 -2762.52 102.32
694 8131.92 3999.00 -4132.92 103.35
727 10810.62 5000.00 -5810.62 116.21
397 7973.87 3650.00 -4323.87 118.46
196 5948.04 2600.00 -3348.04 128.77
704 6891.99 3000.00 -3891.99 129.73
571 26331.41 11200.00 -15131.41 135.10
680 21493.44 9000.00 -12493.44 138.82
465 6537.82 2700.00 -3837.82 142.14
81 12891.96 5300.00 -7591.96 143.24
554 8340.94 3350.00 -4990.94 148.98
609 3040.77 1200.00 -1840.77 153.40
677 9631.08 3799.00 -5832.08 153.52
161 13967.55 5500.00 -8467.55 153.96
635 3818.71 1450.00 -2368.71 163.36
660 7809.13 2899.00 -4910.13 169.37
664 4590.49 1700.00 -2890.49 170.03
82 7320.42 2600.00 -4720.42 181.55
282 12261.19 4100.00 -8161.19 199.05
2 7553.29 2500.00 -5053.29 202.13
729 9817.06 3200.00 -6617.06 206.78
492 7161.67 2200.00 -4961.67 225.53
382 7918.89 2400.00 -5518.89 229.95
502 9984.87 3000.00 -6984.87 232.83
750 10381.62 3000.00 -7381.62 246.05
434 8843.22 2500.00 -6343.22 253.73
182 10123.04 2800.00 -7323.04 261.54
396 16165.79 4400.00 -11765.79 267.40
298 17937.36 4800.00 -13137.36 273.69
629 7319.77 1850.00 -5469.77 295.66
619 16095.32 3600.00 -12495.32 347.09
0 10685.50 2300.00 -8385.50 364.59
485 9664.46 1900.00 -7764.46 408.66
657 32481.05 6000.00 -26481.05 441.35
162 9954.42 1800.00 -8154.42 453.02
451 35956.50 6500.00 -29456.50 453.18
532 10019.90 1800.00 -8219.90 456.66
639 30628.28 4999.00 -25629.28 512.69