Case Study (Social Network Ads) :

SKLearrn (Logistic Regression)

- Logistic Regression (Logistic Model or Logit Model):

    -> a statistical model

    -> uses a logistic function to model a binary dependent variable

    -> models the probability of a certain class or event existing

        - such as pass/fail, win/lose, alive/dead or healthy/sick


    -> To get Logistic Function: log(p/1-p) = b0 + b1 * x

        - Apply sigmoid function to linear equation


    -> measures the relationship between

        - the categorical dependent variable and independent variables 
        - by estimating probabilities using a logistic function


- Analyze customer behavior 

   -> by predicting which customer will click on the advs based on customer features

           - such as salary, country, time spend in social media , ...

   -> Output or the predicted probability (Å·) ranges from 0 to 1 

   -> Specify a threshhold -> 0.5      
   -> If the predicted probability (Å·) > 0.5 => Customer will click (1/Yes)
   -> If the predicted probability (Å·) < 0.5 => Customer will not click (0/No)

Overview

- Importing the Relevant Libraries

- Loading the Data

- Declaring the Dependent and the Independent variables

- Splitting the dataset into the Training set and Test set

- Feature Scaling

- Training the Logistic Regression Model

- Predicting the Test Set Results

- Confusion Matrix

- Classification Report

- k-Fold Cross Validation

- Visualising the Training Set Results

- Visualising the Test Set Results

Importing the Relevant Libraries

In [1]:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

Loading the Data

In [2]:
url = "https://DataScienceSchools.github.io/Machine_Learning/Classification_Models_Intuition/Social_Network_Ads.csv"

df = pd.read_csv(url)

df.head()
Out[2]:
Age EstimatedSalary Purchased
0 19 19000 0
1 35 20000 0
2 26 43000 0
3 27 57000 0
4 19 76000 0

Declaring the Dependent & the Independent Variables

In [3]:
X = df.iloc[:, :-1].values

y = df.iloc[:, -1].values

Splitting the Dataset into the Training Set and Test Set

In [4]:
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0)

Feature Scaling

In [5]:
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()

X_train = sc.fit_transform(X_train)

X_test = sc.transform(X_test)

Training the Logistic Regression Model

In [6]:
from sklearn.linear_model import LogisticRegression

model = LogisticRegression(random_state = 0)

model.fit(X_train, y_train)
Out[6]:
LogisticRegression(random_state=0)

Predicting the Test Set Results

In [7]:
y_pred = model.predict(X_test)

Confusion Matrix

   - A confusion matrix used to describe the performance of a classification model

       - TP (True Positive): Model predicted Correctly
       - TN (True Negative): Model predicted Correctly
       - FP (Flase Positive): Model predicted True but it is actually False

           - Type I Error
           - Predicting people have cancer, but actually they do not have cancer
           - Predictiong earthquake will happen, but it actually does not happen

       - FN (False Negative): Model predicted False but it is actually True 

           - Type II Error -> Life-threatening Error (Must avoid it at all cost)
           - Predicting people do not have cancer, but actually they have
           - Predictiong earthquake will not happen, but it actually happens

   - Accuracy = Correct/Total 
   - Error Rate = Wrong/Total 


source

In [8]:
from IPython.display import Image
from IPython.core.display import HTML 
Image(url= "https://DataScienceSchools.github.io/Machine_Learning/Classification_Models_Intuition/confusionmatrix.jpg", width=400)
Out[8]:
In [9]:
from sklearn.metrics import confusion_matrix, accuracy_score

cm = confusion_matrix(y_test, y_pred)

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy is: {:.2f} %".format(accuracy*100))

sns.heatmap(cm, annot=True, fmt="d")

plt.show()
Accuracy is: 92.50 %

Classification Report

In [10]:
from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

           0       0.92      0.98      0.95        58
           1       0.94      0.77      0.85        22

    accuracy                           0.93        80
   macro avg       0.93      0.88      0.90        80
weighted avg       0.93      0.93      0.92        80

k-Fold Cross Validation

   - Accuracy of test set is often a misleading metric

   - A solution to this problem is a procedure called cross-validation

   - k-fold cross-validation is used to evaluate machine learning models

   - How the performance measure is calculated by k-fold cross-validation? 

        1. The training set is split into k smaller sets  

        1. Each set is used as training data to train the model

        2. The remaining part of the data used as a test set to compute the accuracy 

        3. Then the average of all accuracies is calculated & reported
In [11]:
from sklearn.model_selection import cross_val_score

accuracies = cross_val_score(estimator = model, X = X_train, y = y_train, cv = 10)

print("Accuracy: {:.2f} %".format(accuracies.mean()*100))

print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
Accuracy: 82.50 %
Standard Deviation: 10.29 %

Visualising the Training Set Results

In [12]:
from matplotlib.colors import ListedColormap

X_set, y_set = X_train, y_train

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, model.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('magenta', 'blue')))

plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color = ListedColormap(('magenta', 'blue'))(i), label = j)

    plt.title('Logistic Regression (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

Visualising the Test Set Results

In [13]:
from matplotlib.colors import ListedColormap

X_set, y_set = X_test, y_test

X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                     np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))

plt.contourf(X1, X2, model.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, cmap = ListedColormap(('magenta', 'blue')))

plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())

for i, j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                color = ListedColormap(('magenta', 'blue'))(i), label = j)
    
plt.title('Logistic Regression (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()