- Naïve Bayes:
- A classification technique based on Bayes’ Theorem
- Example:
- Classify a new client as eligible to retire or not based on age and salary
- The probability of customer being eligible to retire given her/his features
- P(Retire|X) = P(X|Retire) * P(Retire) / P(X)
- Bayes’ Rule
- combines prior probability and likelihood to form a posterior probability
- Posterior probability = (Prior probability * Likelihood)
- Prior probabilities -> P(Retire)
- Likelihood -> P(x|Retire)
- Calculate Posterior probability = (Prior probability * Likelihood)
- Posterior probability (Red) = 20/60 * 3/20 = 1/20
- Posterior probability (Blue) = 40/60 * 1/40 = 1/60
- Posterior probability (Red) 1/20 > Posterior probability (Blue) 1/60
- Result : X classified as Red (not eligible to retire)
- Marginal Probability P(X)
- Divide Posterior probability by Marginal Probability
- To Adjust the equation
- To come up with a number ranges between 0 & 1
- Marginal Probability = No of observations in circle/total observations = 4/60
- Posterior probability(Red)/Marginal Probability = (1/20)/(4/60) = 0.75
- Posterior probability(Blue)/Marginal Probability = (1/60)/(4/60) = 0.25
- Importing the Relevant Libraries
- Loading the Data
- Declaring the Dependent and the Independent variables
- Splitting the dataset into the Training set and Test set
- Feature Scaling
- Training the Naive Bayes Model (GaussianNB)
- Predicting the Test Set Results
- Confusion Matrix
- Classification Report
- K-Fold Cross Validation
- Visualising the Training Set Results
- Visualising the Test Set Results
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
url = "https://DataScienceSchools.github.io/Machine_Learning/Classification_Models_Intuition/Social_Network_Ads.csv"
df = pd.read_csv(url)
df.head()
X = df.iloc[:, :-1].values
y = df.iloc[:, -1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 4)
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
- A confusion matrix used to describe the performance of a classification model
- TP (True Positive): Model predicted Correctly
- TN (True Negative): Model predicted Correctly
- FP (Flase Positive): Model predicted True but it is actually False
- Type I Error
- Predicting people have cancer, but actually they do not have cancer
- Predictiong earthquake will happen, but it actually does not happen
- FN (False Negative): Model predicted False but it is actually True
- Type II Error -> Life-threatening Error (Must avoid it at all cost)
- Predicting people do not have cancer, but actually they have
- Predictiong earthquake will not happen, but it actually happens
- Accuracy = Correct/Total
- Error Rate = Wrong/Total
from sklearn.metrics import confusion_matrix, accuracy_score
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy is: {:.2f} %".format(accuracy*100))
sns.heatmap(cm, annot=True, fmt='d')
plt.show()
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))
- Accuracy of test set is often a misleading metric
- A solution to this problem is a procedure called cross-validation
- k-fold cross-validation is used to evaluate machine learning models
- How the performance measure is calculated by k-fold cross-validation?
1. The training set is split into k smaller sets
1. Each set is used as training data to train the model
2. The remaining part of the data used as a test set to compute the accuracy
3. Then the average of all accuracies is calculated & reported
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = model, X = X_train, y = y_train, cv = 10)
print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_train), y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, model.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('magenta', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], color = ListedColormap(('magenta', 'blue'))(i), label = j)
plt.title('Naive Bayes (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
from matplotlib.colors import ListedColormap
X_set, y_set = sc.inverse_transform(X_test), y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 10, stop = X_set[:, 0].max() + 10, step = 0.25),
np.arange(start = X_set[:, 1].min() - 1000, stop = X_set[:, 1].max() + 1000, step = 0.25))
plt.contourf(X1, X2, model.predict(sc.transform(np.array([X1.ravel(), X2.ravel()]).T)).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('magenta', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1], color = ListedColormap(('magenta', 'blue'))(i), label = j)
plt.title('Naive Bayes (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()