Dropping Columns

In [9]:
import pandas as pd

df = pd.read_csv('amazon_fires.csv', encoding = "ISO-8859-1")

new_column_name = { 'ano' : 'year' ,  'mes': 'month', 'estado': 'state',
                   'numero': 'fire_numbers','encontro': 'date'}
                                                
df.rename(columns= new_column_name , inplace=True)   

Month_in_English = {'Janeiro': 'January',
'Fevereiro': 'February',
'Março': 'March',
'Abril': 'April',
'Maio': 'May',
'Junho': 'June',
'Julho': 'July',
'Agosto': 'August',
'Setembro': 'September',
'Outubro': 'October',
'Novembro': 'November',
'Dezembro': 'December'}

df["month"] = df["month"].map(Month_in_English)

new_column_order = [4,1,0,2,3,]

df = df[df.columns[new_column_order]]

df['fire_numbers'] = df['fire_numbers'].str.strip(" Fires")

df['fire_numbers'] = df['fire_numbers'].astype(float)

df = df.dropna() 

df.head()
Out[9]:
date month year state fire_numbers
0 1/1/1998 January 1998 Acre 0.0
1 1/1/1999 January 1999 Acre 0.0
2 1/1/2000 January 2000 Acre 0.0
3 1/1/2001 January 2001 Acre 0.0
4 1/1/2002 January 2002 Acre 0.0

Dropping a Column

In [5]:
df = df.drop(["month"], axis=1)

df.head()
Out[5]:
date year state fire_numbers
0 1/1/1998 1998 Acre 0.0
1 1/1/1999 1999 Acre 0.0
2 1/1/2000 2000 Acre 0.0
3 1/1/2001 2001 Acre 0.0
4 1/1/2002 2002 Acre 0.0

Dropping Multiple Columns

In [11]:
df = df.drop(["month" , "year"], axis=1)

df.head()
Out[11]:
date state fire_numbers
0 1/1/1998 Acre 0.0
1 1/1/1999 Acre 0.0
2 1/1/2000 Acre 0.0
3 1/1/2001 Acre 0.0
4 1/1/2002 Acre 0.0