# Importing data
import pandas as pd
import numpy as np
url= "https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data"
df= pd.read_csv(url, header = None)
#Adding Header
headers = ["symboling", "normalized_losses", "make", "fuel-type", "aspiration", "num_of_doors", "body_style","drive_wheels",
"engine_location", "wheel_base", "length", "width", "height", "curb_weight", "engine_type", "num_of_cylinders",
"engine_size", "fuel_system", "bore", "stroke", "compression_ratio", "horsepower", "peak_rpm", "city_mpg",
"highway_mpg", "price" ]
df.columns = headers
df.describe() -> skips object type columns: to show all columns, Add -> include = "All"
NaN -> meaning Not A Number
count : Number of items in each column
unique : Number of distinct objects in a column (for object type)
top : Most frequent occuring object (for object type)
freq : the number of times objects occurred (for object type)
mean : Average value of each column
std : Standard Deviation of each column
min : Minimun value of each column
25%
50%
75%
max : Maximum value of each column
# It does not show columns with object type
df.describe()
# for showing all columns add include = "all"
df.describe(include = "all")
# A concise summary of the dataframe
df.info()
# to exclude non-null counts, add null_counts = False
df.info(null_counts = False)