Case Study (Wine Quality) : Summary Statistics

In [9]:
import pandas as pd
import numpy as np

df_red = pd.read_csv('red.csv')

df_white = pd.read_csv('white.csv')
In [10]:
df_red.describe()
Out[10]:
Unnamed: 0 fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
count 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000
mean 799.000000 8.319637 0.527821 0.270976 2.538806 0.087467 15.874922 46.467792 0.996747 3.311113 0.658149 10.422983 5.636023
std 461.735855 1.741096 0.179060 0.194801 1.409928 0.047065 10.460157 32.895324 0.001887 0.154386 0.169507 1.065668 0.807569
min 0.000000 4.600000 0.120000 0.000000 0.900000 0.012000 1.000000 6.000000 0.990070 2.740000 0.330000 8.400000 3.000000
25% 399.500000 7.100000 0.390000 0.090000 1.900000 0.070000 7.000000 22.000000 0.995600 3.210000 0.550000 9.500000 5.000000
50% 799.000000 7.900000 0.520000 0.260000 2.200000 0.079000 14.000000 38.000000 0.996750 3.310000 0.620000 10.200000 6.000000
75% 1198.500000 9.200000 0.640000 0.420000 2.600000 0.090000 21.000000 62.000000 0.997835 3.400000 0.730000 11.100000 6.000000
max 1598.000000 15.900000 1.580000 1.000000 15.500000 0.611000 72.000000 289.000000 1.003690 4.010000 2.000000 14.900000 8.000000
In [11]:
df_white.describe()
Out[11]:
Unnamed: 0 fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality
count 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000 1601.000000
mean 798.004372 8.318488 0.528036 0.270637 2.538007 0.087452 15.868832 46.452217 0.996748 3.311362 0.658026 10.421705 5.635228
std 462.305661 1.740311 0.179051 0.194915 1.409227 0.047038 10.455036 32.877710 0.001887 0.154450 0.169436 1.065615 0.807377
min 0.000000 4.600000 0.120000 0.000000 0.900000 0.012000 1.000000 6.000000 0.990070 2.740000 0.330000 8.400000 3.000000
25% 398.000000 7.100000 0.390000 0.090000 1.900000 0.070000 7.000000 22.000000 0.995600 3.210000 0.550000 9.500000 5.000000
50% 798.000000 7.900000 0.520000 0.260000 2.200000 0.079000 14.000000 38.000000 0.996750 3.310000 0.620000 10.200000 6.000000
75% 1198.000000 9.200000 0.640000 0.420000 2.600000 0.090000 21.000000 62.000000 0.997830 3.400000 0.730000 11.100000 6.000000
max 1598.000000 15.900000 1.580000 1.000000 15.500000 0.611000 72.000000 289.000000 1.003690 4.010000 2.000000 14.900000 8.000000